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Abstract

Most models of utility elicitation in decision sup-

port and interactive optimization assume a pre-

defined set of “catalog” features over which user

preferences are expressed. However, users may

differ in the features over which they are most

comfortable expressing their preferences. In this

work we consider the problem of feature elicita-

tion: a user’s utility function is expressed us-

ing features whose definitions (in terms of “cat-

alog” features) are unknown. We cast this as a

problem of concept learning, but whose goal is

to identify only enough about the concept to en-

able a good decision to be recommended. We

describe computational procedures for identify-

ing optimal alternatives w.r.t. minimax regret in

the presence of concept uncertainty; and describe

several heuristic query strategies that focus on

reduction of relevant concept uncertainty.

1. Introduction

Many decision support settings are designed to help
users effectively explore a space of possible alterna-
tives (products, system configurations, plans, etc.) to
find one that is optimal (or at least acceptable) with
respect to the user’s preferences. The ability to tailor
recommendations to the needs and desires of partic-
ular users requires the incorporation of preference or
utility elicitation into the navigation process. Con-
siderable work in AI, decision analysis and operations
research has been devoted to effective means of elicit-
ing preferences [4, 5, 7, 19]; much of this work can be
viewed as a form of interactive optimization.

Typical frameworks for preference elicitation assume
that user preferences are specified over a predefined
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set of attributes. For instance, in consumer prod-
uct configuration—say, choice of an automobile—
preferences are assumed to be defined in terms of prod-
uct features and specifications (e.g., color, engine size,
fuel economy, available options, etc.). We refer to such
“universal” attributes in a specific domain as the cat-
alog features.1 However, just as preferences can vary
significantly from user to user, so too can the features
over which their preferences are most naturally ex-
pressed. For example, some users may be concerned
about the “degree of safety” of a car, but different
users may have different notions of safety in mind,
none of which are catalog features. Furthermore, the
user-specific subjectivity of safety prevents one from
adding a new feature to the catalog.

In this paper, we develop a framework for eliciting sub-
jective features in interactive optimization. We assume
that subjective features can be defined in terms of the
set of catalog features and that preferences are defined
over both catalog and subjective features. As such,
learning subjective feature definitions can be cast as a
concept learning problem [1, 12, 13]. However, unlike
traditional concept learning, our aim is not to learn
the concept definition per se; rather we want to learn
just enough about it to make a good or optimal de-
cision on the user’s behalf. To illustrate, suppose we
have positive and negative examples of safe cars, which
constrain but do not fully specify (subjective) safety:
as a result, only certain cars are consistent with possi-
ble realizations of the definition of safety. Other user
preference information (e.g., utility tradeoffs between
safety, performance and cost) may render any “safety
consistent” car so undesirable that we will not recom-
mend a safe car no matter how the concept definition
is realized. Further elicitation (i.e., refinement of the
version space) is therefore useless.

Our focus in this paper is on feature elicitation. We
develop a framework in which other aspects of a user’s

1This is meant merely to be evocative of a product cat-
alog; we do not assume that an explicit catalog exists.
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utility function are known and only the feature defi-
nition is unspecified. We use minimax regret [4, 20]
as our decision criterion given concept uncertainty, al-
lowing good or optimal decisions to be made without
complete feature specification. We describe an inte-
ger program formulation for computation of minimax
regret in the case of conjunctive concepts. We also
present several heuristic techniques for querying con-
cept definitions that reduce minimax regret quickly.
In contrast to standard concept learning models, we
aim to reduce “relevant” concept uncertainty w.r.t.
the utility model, rather than learn an accurate con-
cept definition for its own sake. While simultaneously
querying users about both utility and feature defini-
tions is important, in this work we focus on feature
elicitation itself (however, we briefly discuss an exten-
sion of our model to the simultaneous case).

2. Regret-based Optimization and
Elicitation

We assume a decision support task in which our sys-
tem is charged with recommending an outcome to a
user from some feasible set; for concreteness, we will
will use terminology associated with consumer product
configuration, but our model applies to any multiat-
tribute decision domain with constraints on feasible
outcomes. Products are characterized by a set of at-
tributes X = {X1, ...Xn}, each with finite domains
Dom(Xi). Let X ⊆ Dom(X ) denote the set of feasi-
ble configurations. For instance, attributes may corre-
spond to the catalog features of various cars (engine
size, fuel economy, cargo capacity, etc.) with X de-
fined by constraints on attribute combinations, or an
explicit database of feasible configurations. The user
has a utility function u : Dom(X ) → R, typically pa-
rameterized compactly (e.g, using linear, additive or
generalized additive form [6, 10, 16]). The precise form
of u is not critical, only that u(x; w) is linear in the
parameters (or weights) w.

Our system does not have direct access to the user’s
utility parameters w; but elicitation can be used to
refine its knowledge of w. However, decisions will still
generally be made without full knowledge of w for two
key reasons [4]. First, good or optimal decisions can
often be made with little utility information. Second,
the value of obtaining certain utility information—in
terms of its impact on decision quality—is often not
worth the cost of obtaining it.

Assume a decision must be made, but the system only
knows that w ∈ W , i.e., the user’s utility function lies
in some space W . We use the minimax-regret deci-
sion criterion for making decisions in the face of such

utility function uncertainty. Minimax regret [20] has
been advocated as a means for robust optimization
in the presence of data uncertainty [17], and has more
recently been used for decision making with utility un-
certainty [4, 5, 19]. Following [4]) we have:

Definition 1 Given utility space W , define the max
regret of x ∈ X, the minimax regret of W and the
minimax optimal configuration as follows:

MR(x; W ) = max
w∈W

max
x′∈X

u(x′; w)− u(x; w)

MMR(W ) = min
x∈X

MR(x,W )

x∗W = arg min
x∈X

MR(x,W )

Intuitively, MR(x,W ) is the worst-case loss associated
with recommending configuration x; i.e., by assuming
an adversary will choose the user’s utility function w
from W to maximize the difference in utility between
the optimal configuration (under w) and x. The min-
imax optimal configuration x∗W minimizes this poten-
tial loss. MR(x, W ) bounds the loss associated with
x, and is zero iff x is optimal for all w ∈ W .

Minimax regret has been applied successfully to ro-
bust optimization given utility uncertainty in additive
models [5] and generalized additive models [4, 6] for
decision problems involving large-scale mixed integer
programs (MIPs). While regret-optimization requires
the solution of a minimax problem with a quadratic
objective, the application of Benders’ decomposition,
constraint generation, and various reformulations ren-
ders the problem feasible, converting it to a (linear)
MIP [4, 5]. We will adapt these techniques below.

Minimax regret has also proven to be effective as
a means of utility elicitation [4, 5, 6]. One espe-
cially effective heuristic strategy is the current solu-
tion strategy, where preference queries are asked that
involve the current minimax-optimal configuration x∗W
and/or the adversarial configuration (or witness). Un-
like volumetric-based approaches to elicitation, regret-
based elicitation reduces utility uncertainty only in the
relevant regions of utility space, exploiting knowledge
of which configurations are actually feasible. In con-
trast to Bayesian elicitation [3, 7], regret models re-
quire no prior over utility functions, nor expensive,
approximate probabilistic inference.

3. Subjective Feature Elicitation

In many cases, some of the attributes over which a user
forms her preferences will not coincide with system
catalog features. We consider subjective features that
are “objectively” definable using catalog attributes,
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but where the definition varies from user to user.2 For
instance, the notion of a safe car may be different for a
parent with small children, a young, single professional
interested in high-performance vehicles, and a family
that takes frequent trips to the mountains. The con-
cept in question, namely, safety, has personalized def-
initions. The user also has preferences for safety (as
she does for other car attributes) represented in the
form of a utility function: it is both the user’s utility
function over this extended attribute space, as well as
her personal definition of safety, that determines the
optimal vehicle. As such, the decision support system
must engage in both preference elicitation and feature
elicitation to make a suitable recommendation.

This leads to interesting tradeoffs in elicitation. One
could engage in feature elicitation using well-known
concept learning techniques [1, 14], and then move to
preference elicitation (e.g., using techniques mentioned
above); but this could be wasteful. For instance, sup-
pose we learn that safety requires attribute Xi to be
true (e.g., have side airbags) but know nothing else
about the concept. If we engaged in preference elici-
tation simultaneously and ascertained that no cars in
the user’s price range satisfy Xi—or that other more
important features must be sacrificed to attain Xi—
then the full concept definition is not needed for op-
timal allocation. For similar reasons, full preference
elicitation followed by feature elicitation may be un-
desirable. This suggests that interleaved feature and
utility elicitation can be much more effective.

In this paper, we focus on the problem of feature elic-
itation in isolation, setting aside utility uncertainty.
Apart from forming the foundation for work on joint
utility and feature elicitation, this problem is interest-
ing in its own right, as an extension of concept/query
learning. In the remainder of this section, we describe
a regret-based framework for pure feature elicitation,
assuming a known utility function. We briefly discuss
a more general framework that incorporates both util-
ity and feature uncertainty in Sec. 5.

3.1. Feature Elicitation Model

We have features X = {X1, ...Xn}, which we take to
be Boolean for ease of exposition, and a feasible set
X ⊆ Dom(X ). A known reward r(x) for each x ∈ X
reflects user utility for x w.r.t. known product features.
The user also has preference for configurations satisfy-
ing some target concept c. Concept c is an unknown

2Other subjective features may not be so definable (e.g.,
visual features); for this, data-intensive collaborative filter-
ing techniques are more appropriate.

Boolean function over X : c(x) = c(x1, . . . ,xn).3 We
suppose that c is drawn from a particular function
class/hypothesis space H. We treat identification of
c as a problem of concept learning [1, 12, 14], with
some query set Q that can be used to refine the tar-
get concept. For instance, membership queries would
be quite natural (“do you consider the following car
to be safe?”).4 Finally, a known bonus p is associated
with any x s.t. c(x) holds, representing user utility for
concept satisfaction.

For given a target concept c and x ∈ X, define the
utility of x under concept c to be:

u(x; c) = r(x) + pc(x)

(We treat c(x) as an indicator function for concept
satisfaction). In other words, the utility of x is its
reward, plus the bonus p if x satisfies c. The optimal
configuration is x∗ = arg max u(x; c).

3.2. Minimax Regret over Concepts

If we do not know the target concept, we cannot gener-
ally identify x∗; but we can still make a decision with
partial concept information. Let version space V ⊆ H
represent our current set of consistent hypotheses [18].
We define minimax regret w.r.t. feature uncertainty:

Definition 2 Given version space V , the max regret
of x ∈ X, the minimax regret of V and the minimax
optimal configuration are:

MR(x; V ) = max
c∈V

max
x′∈X

u(x′; c)− u(x; c) (1)

MMR(V ) = min
x∈X

MR(x, V ) (2)

x∗V = arg min
x∈X

MR(x, V ) (3)

This provides a simple model of subjective feature
uncertainty that abstracts away utility uncertainty.
An adversary can cause us to regret recommenda-
tion x through suitable choice of concept c ∈ V . If
MMR(V ) = 0, then x∗V is optimal for any realization
of the concept c ∈ V .

We ask queries from query class Q to refine knowledge
of c to a point where minimax regret MMR(V ) is re-
duced to some acceptable tolerance ε (possibly zero).
Our goal is very different from that of classical concept
learning. We aim not to learn the concept c itself, but
simply learn enough about it to make a good decision.
The reward model and feasibility constraints on X of-
ten allow us to make optimal recommendations with
relatively weak concept knowledge.

3Allowing multivalued concepts is straightforward.
4Other query types (e.g., equivalence queries) are less

natural in this domain, but may play a role in others.
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We can characterize the minimax optimal solution in
terms of the structure of the version space. We use
the standard general-specific version space lattice [18]:
concept c is at least as general as c′ (c ≥ c′) iff c′ ⊆ c
(we treat a concept c and its extension on X indistin-
guishable where no confusion arises). For any concept
c, let Xc = X ∩ c be the set of feasible outcomes sat-
isfying c. Define the best outcome satisfying c:

x∗c = arg max
x∈Xc

r(x); and r∗c = max
x∈Xc

r(x).

Clearly r∗c ≥ r∗c′ if c ≥ c′. The measure r∗c induces a
natural ordering ≥r on V that respects the general-
specific ordering:

Observation 1 If c ≥ c′ then r∗c ≥ r∗c′ .

We say c∗ ∈ V is reward optimal iff r∗c∗ ≥ r∗c , ∀c ∈ V .
Define X+ ⊆ X to be the set of configurations with
highest reward (independent of V ) and r+ = r(X+).
Finally, let r1 > r2 . . . > rm be an ordering of the
m (distinct) values in {r∗c : c ∈ V }. Define Ci =
{c ∈ V : r∗c = ri} and Si = ∩Ci; i.e., Si is the set of
configurations in the intersection of all concepts in V
with the ith-largest r∗ value (Si may be empty).

Let MMR(V ) be the current minimax regret level, x∗V
a minimax optimal solution, xw the adversarial wit-
ness outcome, and cw the witness concept. Intuitively,
minimax regret can be viewed as a game between a
player choosing x∗ and an adversary choosing xw and
cw. It is not hard to see that if x∗ is not consistent with
V (i.e., x (∈ c for all c ∈ V ), then x∗ ∈ X+. So restrict
attention to V -consistent configurations. Suppose the
player chooses some V -consistent x∗. If x∗ (∈ S1, the
adversary can choose a cw ∈ C1 that excludes x∗ and
xw = x∗cw

, thus maximizing regret by taking a highly
rewarding configuration, obtaining the bonus, and pre-
venting the player from getting the bonus.

Regret will be strictly lower if the player chooses
x∗ ∈ S1 itself: for the adversary to get the bonus
and prevent the player from getting it, it must choose
a concept outside C1 (hence a less rewarding xw).
The player can further limit the adversary by ensur-
ing x∗ ∈ S2 (forcing the adversary to move to C3 if it
wants to get the bonus while the player does not). Of
course, this comes at a price: the player gets a lower
reward by moving to an x∗ ∈ S1 ∩ S2 (if indeed this
set is nonempty); in the game, this sacrifice is traded
off against the benefit of further restricting the adver-
sary. This informal line of reasoning can be formalized
to prove:

Proposition 1 If x∗V is not consistent with V , then
x∗V ∈ X+ (and all x ∈ X+ have identical max regret).

Proposition 2 If x∗V (∈ X+, then: (a) x∗V is consis-
tent with V ; (b) x∗V ∈ arg max{r(x) : x ∈ S1∩ . . .∩Si}
for some i ≥ 1; and (c) either cw ∈ C1, or cw ∈ Ci+1.

We also have:

Observation 2 x∗V ∈ cw only if xw ∈ cw.

Observation 3 If r∗c∗ ≤ r+ − p, then MMR(V ) = 0
and x∗ = xw = x+.

Thus if we have reduced V so that no V -consistent
x ∈ X has reward within p of r+, then the (true)
optimal choice does not satisfy the target concept.

3.3. Computing Regret: Conjunctive Concepts

We assume that the underlying configuration problem
is represented as a MIP maxx∈X r(x). When subjec-
tive feature uncertainty exists, minimax regret com-
putation can often be directly incorporated into the
MIP for particular concept and query classes. We il-
lustrate this in the case of (nonmonotone) conjunctive
concepts with membership queries.

Assume target c is a conjunction of literals over vari-
ables Xj . Memberships queries ask whether x ∈ c for
a particular configuration. Let E+ be the set of pos-
itive examples, E− the set of negative examples, and
(nonempty) V the induced version space. Instead of
representing V using most general and most specific
concepts, we encode E+ and E− directly in our MIP
below (see, e.g., Hirsch [15] who uses negative exam-
ples to represent most general concepts).

Constraint Generation: We formulate the mini-
max problem Eq. 2 as a minimization with O(|V |)
constraints. Let xc = arg maxx∈X u(x; c) and con-
stant p(x, c) = p if c(x) and 0 otherwise. Let indicator
variable Ic, for each c ∈ V , denote that configuration
(X1, · · · , Xn) satisfies c; and write xj ∈ c (xj ∈ c) to
denote that variable Xj occurs positively (negatively)
in c. Then MMR(V ) is:

min δ

s.t. δ ≥ r(xc)−r(X1, · · ·Xn)+p(xc, c)−pIc ∀c∈V (4)

Ic ≤ Xj ∀c ∈ V, ∀xj ∈ c (5)

Ic ≤ 1−Xj ∀c ∈ V, ∀xj ∈ c (6)

For any fixed concept c, the adversary maximizes
the regret of (X1, · · · , Xn) with witness xc. The MIP
above chooses a configuration that minimizes against
the “worst-case” choice of the adversary (with (4) en-
suring MMR is as great as regret given any c ∈ V ;
and (5, 6) encoding whether (X1, · · · , Xn) satisfies c).
Regret constraints for most c ∈ V will be inactive,
so we use constraint generation to search through the
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space of adversarial concepts.5 Let Gen ⊆ V ; we solve
a relaxed MIP using only c ∈ Gen. Let δ∗ and x∗
be the solution to the relaxed MIP. We test for vio-
lated constraints by solving the max regret problem
MR(x∗, V ), detailed below. If MR(x∗, V ) > δ∗, con-
cept c′ (produced as a witness in MR computation)
offers larger regret for x∗ than any c ∈ Gen. So we
add c′ to Gen and resolve. If MR(x∗, V ) = δ∗, x∗ is
the optimal solution to MMR(V ).

Generating Violated Constraints: We can com-
pute the maximally violated constraint for MMR com-
putation above by solving the max regret problem
MR(x, V ) for the current relaxed solution x∗. This
too can be formulated as a MIP. For each configura-
tion variable Xj , let binary indicator variables I(xj)
(resp. I(xj)) denote that Xj is positive (resp. negative)
in concept c. We also introduce binary variables Bx

and Bw indicating that x and the witness allocation
satisfy the chosen concept. Using x[j] to denote the
jth literal of x, this MIP gives MR(x; V ):

max r(X1, · · · , Xn)− r(x) + pBw − pBx

s.t. Bw + I(xj) ≤ Xj + 1.5 ∀j ≤ n (7)

Bw + I(xj) ≤ (1−Xj) + 1.5 ∀j ≤ n (8)

Bx ≥ 1−
X

j:x[j] positive

I(xj)−
X

j:x[j] negative

I(xj) (9)

X
j

I(¬y[j]) = 0 ∀y ∈ E+ (10)

X
j

I(¬y[j]) ≥ 1 ∀y ∈ E− (11)

(X1, · · · , Xn) ∈ X (12)

Apart from the binary indicator variables
Bw, Bx, I(xj), I(xj) described above, we have
configuration variables Xj . (12) ensures that the
configuration is feasible, and notation r(X1, · · · , Xn)
loosely denotes the reward of any configuration (which
is encoded using a linear parameterization of utility).
(7) and (8) ensure that the adversary does not get
the concept bonus p (i.e., cannot set Bw = 1) unless
(X1, · · · , Xn) satisfies the concept dictated by the
I-variables. Similarly, (9) ensures that the input
configuration x cannot be denied the bonus (i.e., the
adversary cannot set Bx = 0) unless x violates at
least one conjunct in the chosen concept. Finally, (10,
11) restrict the conjunctive concept to be consistent
with all positive and negative examples.6

5V is exponential in |X | with conjunctive concepts; con-
straint generation is even more important in other hypoth-
esis spaces, since they can have doubly exponential size.

6The version space for conjunctions of literals can, of
course, be encoded more succinctly, i.e., without con-
straints for each example.

3.4. Query Strategies

We now consider several heuristic query strategies that
can quickly reduce MMR(V ). We focus on member-
ship queries, since these are most natural in prefer-
ence assessment. Query strategies from concept learn-
ing can be used directly to refine feature uncertainty.
However, the motivation for many query strategies is
very dependent on the learning model in question. For
instance, the mistake-bound model [1] provides strate-
gies for certain hypothesis classes, such as conjunctions
of literals, which offer a polynomial mistake bound.
However, these minimize mistakes in prediction, not
queries: even a mistake-free prediction requires user
concept feedback. Our desire to provide worst-case
guarantees on performance without distributional in-
formation over potential user-defined features prevents
us from adopting a PAC-model [12]. The most natural
connection to our model is with work on exact concept
learning that attempts to minimize queries [14]. How-
ever, results for these models tend to be rather weak.
For instance, conjunctive concepts cannot be learned
without exponentially many membership queries in
the worst case [14].

A halving strategy can be adapted to our utility-based,
choice-oriented concept learning model: we ask ran-
dom memberships queries until a positive example is
found (in the mistake-bound model negative predic-
tions would be used); then queries are asked by negat-
ing literals one by one in the (unique) most specific
conjunctive hypothesis. Once a positive example is
found, this converges to the true conjunctive concept
using a number of queries linear in |X |. We need not
identify the concept exactly however; we terminate
once minimax regret reaches an acceptable level. We
call this the halving strategy. Despite its exponential
worst-case for exact concept learning, the requirement
to simply reduce regret should give rise to better per-
formance in our model.

One problem with halving is its lack of regard for re-
ward or configuration feasibility: it wastes effort learn-
ing about parts of a concept definition that are ir-
relevant to making a good “choice.” So we consider
an alternative heuristic based on using information in
the current solution: either the minimax optimal x∗V
or the witness xw [4]. Intuitively, our best hope for
(immediate) reduction in regret is to change the ver-
sion space so that the status of at least one of x∗ or
xw changes w.r.t. V . We define the current solution
strategy (CSS) by considering three distinct cases for
suggesting membership queries.

First consider the case where x∗,xw ∈ cw: we know
cw ∈ C1 must be reward-optimal and xw must be a
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V -consistent configuration with greatest reward. CSS
asks a membership query xw (does xw satisfy the con-
cept), which has great potential value: if the answer is
positive, then we know xw is, in fact, optimal whatever
the concept (and we reduce MMR(V ) to zero); and if
the answer is negative, we rule out a reward-optimal
concept cw from the version space, potentially reduc-
ing minimax regret, and strictly reducing max regret
(ignoring ties in reward) for all x (∈ cw. (Asking a
membership query x∗ has less impact in this case).

Second suppose x∗ (∈ cw,xw ∈ cw: we either have
x∗ ∈ X+, in which case cw ∈ C1; or x∗ is V -consistent,
in which case cw ∈ Ci+1 (where x∗ is chosen from
S1 ∩ . . . ∩ Si). In this case, CSS asks a membership
query x∗. A positive response reduces pairwise max
regret between x∗ and xw (and hence often reduces
MMR(V )). A negative response does not reduce pair-
wise regret, but it rules out all concepts from the ver-
sion space that include x∗ and all concepts more gen-
eral (if any) than cw, giving us additional flexibility in
the choice of allocation without losing value.

Finally, suppose x∗,xw (∈ cw (recall, we cannot have
x∗ ∈ cw,xw (∈ cw). If xw is not V -consistent, we know
xw ∈ X+, so CSS asks a membership query x∗ (the
rationale is as in case 2 above). If xw is V -consistent,
then xw (∈ cw only if xw ∈ c implies x∗ ∈ c, for all
c ∈ V (in which case, choosing a concept that satisfies
xw has no impact on MMR(V )). In this case, CSS
asks a membership query xw (as in case 1 above).7

4. Empirical Evaluation

We experimented with the two heuristic strategies,
Halving and CSS, as well as Random, which asks
random membership queries. Configuration problems
with 30 Boolean variables were generated, each with
random binary constraints to reflect the realistic as-
sumption that the space of feasible products is rela-
tively sparse (each constraint rules out (on average)
half of the configurations). Rewards were generated
using a linear utility function: each variable Xi was
randomly assigned a reward ri ∼ U [0, 10] and a par-
ity (if positive, xi gets reward ri and xi reward 0; if
negative, the opposite). Reward r(x) is the sum of the
variable rewards. The bonus p for concept satisfac-
tion was fixed at a certain percentage of the maximum
reward. Conjunctive concepts were randomly drawn
from a pool of ten variables, with each variable (inde-
pendently) occurring in the concept positively (proba-
bility 0.25), negatively (0.25), or not at all (0.50). Min-

7If CSS recommends x∗ or xw when membership (or
nonmembership) is logically certain given V , the other
query is asked. (Both can’t be certain unless MMR is 0.)
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Figure 1. Max regret vs. number of queries (20 constraints,
p = 25%), 50 runs

.
imax regret computation was reasonably fast (under 1
sec. using CPLEX 11 on a quad-core Intel machine).

We first illustrate the performance of our three main
strategies using some typical parameter settings: 20 bi-
nary constraints and a bonus p set at 25% of the max-
imum reward value. Fig. 1 shows reduction in MMR
as a function of the number of membership queries by
each strategy. The performance of CSS is considerably
better than that of Halving. Key to the performance
difference is the ability to exploit the current solution
to identify which concepts have the greatest impact on
performance given feasibility restrictions and reward
values (in particular, r∗ values).

The relative density of feasible configuration space has
a significant impact on the relative performance of
Halving versus CSS. Intuitively, with a sparser solu-
tion space, fewer configurations satisfy a given concept
c (hence reducing r∗c ), and the value of considering
most concepts is diminished. In such a case, CSS has
an advantage over Halving. Conversely, with dense
solution spaces, narrowing down the version space to
get close to full concept identification becomes more
important, making Halving potentially more attrac-
tive. Fig. 2 shows the number of membership queries
needed to reduce minimax regret to 80% of its original
level (prior to any queries) while varying the number
of binary constraints. More constraints give a sparser
solution space; and with 20 (or more) constraints, CSS
has a significant advantage.

Similarly, the relative magnitude of the feature bonus
p to overall reward can have a dramatic impact on
the number of required queries and the need to nar-
row down the feature definition more or less precisely.
Intuitively, when p is relatively small, it has a rela-
tively small impact on utility and far fewer queries
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Figure 2. Sensitivity to number of binary constraints;
bonus p = 25%, 50 runs.
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Figure 3. Sensitivity to value of bonus p (20 random con-
straints), 50 runs.

will be needed to reduce regret to zero (since even a
loose feature definition will lead to little error). As the
magnitude of the bonus increases, a greater need for
more precise concept constraints will emerge. Fig. 3
shows this effect. We show the number of membership
queries needed to reduce minimax regret to 80% of its
original level (prior to any queries), varying the rela-
tive size of the bonus from 5% to 50% of r+. While
an average of roughly five queries suffice for the CSS
strategy at p = 5%, about 25 queries are needed at
p = 50%. By way of contrast, Halving needs signifi-
cantly more queries (from nearly 30 to over 60).

Finally, in certain elicitation settings, it is reasonable
to assume that a user can provide a positive concept
example (e.g., a “safe” car configuration). In the ex-
act learning model, conjunctive concept identification
is hampered by a potentially exponential number of
membership queries with negative responses. Once a
positive response is obtained, halving can be utilized.
Fig. 4 shows a comparison of Halving in which an ini-
tial positive instance is assumed, with Halving (no ini-
tial seed) and CSS (with initial seed). We plot regret
reduction as a function of the number of queries. The
availability of a positive seed has a strong impact on
regret, reducing the initial minimax regret to 15 from
over 35. Halving is able to reduce regret to 0 in just 10
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Figure 4. Max regret vs. number of queries with/without
an initial positive seed (25 constraints, p = 25%), 50 runs.

queries (cf. no initial seed, where it needs 100 queries
to get to regret 5). The CSS strategy, dominant in
the setting without seeding, still compares favorably
to Halving if a positive example is available.

Overall, these results suggest minimax regret has great
value as a solution concept for handling feature uncer-
tainty, and can greatly reduce the number of queries
needed to make a good decision relative to exact con-
cept identification. In our setting, asymptotic perfor-
mance takes a back seat to practical performance. Re-
ducing the number of queries one asks of a user from,
say, 30 to 20, can have a huge impact on the acceptance
of a decision support system. Our framework allows
one to make robust decisions with limited information.

5. Concluding Remarks

We have presented a model of subjective feature elic-
itation for use in preference elicitation. The use of
minimax regret allows us to focus user queries on those
aspects of a feature or concept that have the greatest
impact on decision quality, thus reducing the effort re-
quired to learn the relevant parts of a concept.

Related Work Our work has connections to work in
concept learning and active learning. Our model dif-
fers from the mistake-bound model in our need to min-
imize queries (not prediction error), while the PAC-
model emphasis on probabilistic correctness w.r.t. a
fixed data distribution renders it inapplicable to our
setting.8 Exact query learning [14] bears the closest

8Another difference is in the emphasis on computational
tractability: we generally deal with underlying optimiza-
tion problems, like configuration, that are inherently NP-
hard. While the computation methods in this paper are
very fast (all queries generated in well under a second),
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link to our model; but ours differs from all concept
models in the aim to learn just enough about a concept
to make a good decision, not the entire concept. How-
ever, query strategies from these models (like halving)
can be adapted to the regret setting as we have seen.
Connections between concept learning and preference
elicitation have been explored by [2], who deal with
exact learning of a combinatorial valuation function.
While their focus is on exact learning differs from ours,
their valuation model should lend itself to approxima-
tion and regret analysis.

Our work can also be viewed as a form of active learn-
ing [8, 9, 11]. Indeed, the focus on regret reduction
(and termination when regret reaches some ε) is a
non-Bayesian analog of the value of information cri-
terion that underlies much work on active learning.
We assume a realizable setting in this work, and our
membership query selection technique falls within the
framework of [8] (we only query points on which two
c ∈ V disagree). While most techniques from active
learning rely on probabilistic data models [9, 11], there
is certainly potential to adapt active query strategies
to our setting (where the data is not drawn randomly,
but the set X is implicitly available). The key will be
to bias queries in a way that accounts for the contribu-
tion of the reward function to error (minimax regret).

Joint Preference and Feature Elicitation Space
precludes a full discussion, but the MIP approach
above can be generalized to account for simultaneous
uncertainty in both feature definition and utility (i.e.,
reward function and bonus p). We assume general lin-
ear constraints relating the utility of two outcomes
(e.g., a user comparison of two products will tell us
that the utility of one is greater than the other). A key
complication, compared to standard elicitation models
[4], is that we do not simply get linear constraints on
utility parameters w. We must encode a set of “condi-
tional constraints” that relate the difference in reward
between the two products to whether either or both
satisfy the unknown concept. These can be linearized
and encoded in single MIP. We defer a full investiga-
tion to future work.

Future Directions A number of important direc-
tions for future research remain. Among these are ex-
ploring whether existing active learning models and
query strategies can be adapted to our choice-based,
regret model. We are currently investigating new
query types and practical models for richer hypoth-
esis spaces. Generalizing the form of catalog and sub-
jective features to real-valued domains is of interest,

our primary concern is minimizing user burden.

as is investigation of the conceptually straightforward
extension to discrete, non-Boolean features. Finally,
extending our approach to non-additive utility mod-
els (e.g., adapting techniques for GAI models [6]) is
essential.
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