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Abstract

Peer-to-Peer (P2P) networks have grown to such a massive scale
that performing an efficient search in the network is non-trivial. Sys-
tems such as Gnutella [1] were initially plagued with scalability prob-
lems as the number of users grew into the tens of thousands. As the
number of users has now climbed into the millions, system designers
have resorted to the use of supernodes to address scalability issues and
to perform more efficient searches.

While the use of supernodes has become commonplace in unstruc-
tured P2P networks, no theoretical bounds on search time have been
established. We analyze search time and show that supernodes are
required for efficient search. We also formulate the optimal reduction
in search time that can be achieved by using supernodes and show a
construction where search time of O(loglogn) is realized.

1 Introduction

Peer-to-Peer networks have recently ballooned in popularity and currently
use more bandwidth on the Internet than any other application [5]. File shar-
ing P2P systems such as Kazaa [2] have millions of users sharing petabytes
of data. The main problem which these systems must address is efficiently
locating data. It is non-trivial to find an approach to perform an efficient
search in such a large and diverse network. Determining theoretical bounds
on search time would be an asset to those designing future P2P networks.

Supernodes are often used in unstructured P2P networks to improve
search time and scalability. While their use has been empirically shown to
improve search time (e.g. by Chawathe et al. [4]), no theoretical analysis
has been done on the use of supernodes in unstructured networks.

In this work, we show that supernodes are necessary for efficient search.
We proceed by first establishing a lower bound on the worst-case search time
in a network without supernodes. We then construct a graph which illus-
trates that with supernodes, O(loglog(n)) search is possible. Additionally,
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we establish a lower bound on the benefit of using supernodes in a network,
and show that our construction is near optimal.

2 Problem Statement

We want to show that supernodes are necessary for efficient search. To show
this, we first show that without supernodes, we cannot have efficient search.
We then show that with supernodes, efficient search is possible.

Figure 1: Worst case search time in a P2P network

2.1 Definitions

Search Time The number of hops required to reach a node containing the
desired document using a flood search.

Worst-Case Search Time The maximum possible search time in a par-
ticular P2P network, where there is only one copy of the desired doc-
ument and the search node and the document node are located as far
apart as possible. Figure 1 is an example.

Efficient Search Searching in a P2P network with n nodes is efficient if
the worst-case search time is O(loglogn).

Ordinary Node A typical node in a P2P network, having a small number
of neighbours (e.g. 6)

Supernode A node in a P2P network with a larger number of neighbours
(e.g. 100). See figure 2 for an example.

2



Figure 2: A P2P network with supernodes

Search time depends heavily on the topology of the P2P network. This
can be seen by making a few simple observations about search time using
pathological topologies.

Figure 3: Best case search time in a P2P network

Best Case Search Time The search time in the best case for any network
topology is the case where the desired document is one hop away from
the search node. This would be a search time of 1. See Figure 3.

Worse Case Search Time with Worse Topology The search time in
the worst case is the case where the nodes in the network are arranged
in a single path and the search node is the first node in the path and
the document node is the last node in the path. This would be a
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Figure 4: Worst case search time in a P2P network with the Worst Topology

search time of n − 1, where n is the number of nodes in the network.
See Figure 4.

The topology of the network directly affects the worst-case search time.
In the following section, we define the problem of determining a lower bound
on the worst-case search time.

2.2 Lower Bound on Search Time without Supernodes

It has been shown experimentally in the literature that peer-to-peer networks
without supernodes are inefficient and scale poorly to a large number of
nodes [4, 7]. We approach this problem analytically with the goal of showing
that there is a lower bound on worst-case search time in a P2P network
without supernodes.

2.2.1 Approach

In order to show that supernodes are required to achieve efficient search,
we analyze the search time in P2P networks without supernodes. Since a
supernode is a node with a large number of neighbours, we can eliminate
supernodes by placing a limit on the maximum number of neighbours a node
is permitted to have.

Goal: In a P2P network with n nodes and some bound on the number
of neighbours f(n) (e.g. f(n) = logn), we wish to show a lower bound on
the worst-case search time.

Since worst-case search time is directly dependent on the topology of
the P2P network, this translates into a problem of: given n nodes and some
bound on the maximum number of neighbours, what is the lowest possible
worst-case search time for any network topology.
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To show this lower bound, we take an adversarial approach. Consider a
game between a network designer and a document placer. Given a network
topology, the job of the document placer is to choose the search node and
the document node to be as far apart as possible (as is the case in Figure 1.
The game begins with the network designer first designing the topology of
the network, within the constraints of the problem. The document placer
then takes his turn and chooses the search node and the document node to
be as far apart as possible. The number of hops between these nodes is the
score, and the network designer wins the game when the the score is as low
as possible.

Taking this approach, the document placer is creating the worst search
possible and the network designer is attempting to construct the network
with least search time. If the network designer succeeds in designing a
network with lowest possible worst-case search time (within the constraints
of the problem), a lower bound on search time has been shown.

We now reformulate this problem into graph theory in order to determine
this lower bound (see section ??).

2.3 Graph Theory Representation

2.3.1 Definitions

Maximum Degree We denote ∆ as the maximum degree over all vertices
of a graph.

Minimum (u,v)-path We denote the minimum path between two vertices
u, v, u 6= v, as d(u, v).

Diameter We define diameter D as max {d(u, v) : ∀ u, v ∈ V}

2.3.2 Representation

Consider the graph representation of a P2P network. The peers are rep-
resented by vertices in the graph and neighbour-to-neighbour connections
are represented by an edge connecting two vertices in the network. In order
to eliminate supernodes, we bound the maximum degree of any node to ∆.
The worst-case search time in a P2P network is equivalent to the diameter
of the graph.

In graph theory terms, the problem becomes: Given a graph G with n
vertices and maximum degree ∆, can we bound the diameter of the graph
D in terms of n = |V| and ∆?

Section ?? shows our lower bound.
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2.4 Assumptions

2.4.1 Search time Metric

In our work, we define search time to be the number of hops from the search
node to document node. However, in a P2P network, other metrics may
seem desirable. For example, it is important to consider the total number
of messages generated by a flood search. It is also important to know the
number of nodes which must perform a local search for the desired document.

While both of the above metrics are important in P2P implementations,
they are inapplicable for our theoretical analysis of lower bounds on search
time. To establish a lower bound on worst-case search time, we are consid-
ering the adversarial worst-case where there is just one desired document
and it is placed as far from the search node as possible. In this case, because
the search proceeds with no knowledge of where the document is (i.e. the
network is unstructured), the entire network will have to be searched in the
worst-case. Therefore, the number of nodes searched will always be n, for
a network with n nodes. As well, minimizing the total number of messages
conflicts with the goal of efficient search, since reducing the number of mes-
sages could possibly reduce the number of nodes that can be reached by a
search.

We are interested in retrieving the search results as quickly as possible.
Having every search flood the entire network is impractical. However, since
we seek to show a lower bound on the worst-case search time, we must
assume the case where every node is working to return the results as quickly
as possible. Therefore, it can be seen that the time to retrieve the search
results can only increase as the number of hops to the desired document
increases. For example, it will necessarily take longer to retrieve the results
if the document is four hops away from the search node than if the document
were two hops away. Thus, reducing the diameter of the network necessarily
improves worst-case search time.

2.4.2 Relation to DHTs

Two classes of P2P networks have emerged: structured and unstructured.
A structured P2P network is one which imposes constraints on which nodes
contain which documents. These are typically implemented as distributed
hash tables (DHTs), for example Chord [9] and CAN [6]. Unstructured
networks such as Gnutella [1] or Kazaa [2] do not have such constraints and
documents are kept at their originating node.

The main benefit that a structured P2P network provides is that a search
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proceeds with the knowledge of the location of the desired document. For
example, in Chord, every hop of a query necessarily takes it closer to the
document. This is possible because documents are placed in the network in
a deterministic fashion. In the case of an unstructured network, there is no
notion of document placement, and a flood-style search is the best that can
be achieved.

Although DHTs provide numerous benefits, unstructured systems are
known to provide more efficient lookup times for popular documents. For
example, Loo et al. [3] suggest a hybrid flooding and DHT solution where
flooding is used to locate popular documents and a DHT is used to locate
rare documents. DHTs also require a large amount of maintenance overhead
to maintain uniform distribution of documents. For these reasons, DHTs
have yet to be adopted for general-purpose large-scale file-sharing applica-
tions and, therefore, we focus our analysis of search time in unstructured
networks.

2.5 Effect of Adding Supernodes

Once we have established a lower bound on worst-case search time without
supernodes, we show that with supernodes we can achieve efficient search.
Using supernodes in unstructured P2P network has become common prac-
tice, especially in file sharing systems, such as Gnutella [1] and Kazaa [2].

The initial motivation behind using supernodes in a P2P network was
to improve scalability [4]. Supernodes also add stability to the network and
reduce overall execution time of the search. This is due to the observed
heterogeneity in P2P networks; in particular, certain peers exhibit server-
like characteristics. For example, Sariou et al. [8] found that 7% of Gnutella
users reported bandwidths of T1 or greater, and that about 10% of sessions
last more than 5 hours each. The existence of such nodes illustrates that it is
not unreasonable to assign a small set of nodes more load and responsibility.

These experimental observations support our theoretical construction of
a P2P network with supernodes, done in section 4.

3 Search without Supernodes

We desire to reduce worst-case search time in the P2P network by reducing
the diameter of a equivalent graph. However, there is a limit to how small
the diameter of a graph without supernodes can be. We proceed to give an
analysis of how diameter is limited by the degree and number of nodes in a
graph.
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3.1 Bounds on Diameter

E.F. Moore established the following bound on the number of nodes in a
graph given a diameter of D and a maximum degree of ∆, which holds for
all ∆ ≥ 3:

n ≤ 1 + ∆
{
1 + (∆− 1) + · · ·+ (∆− 1)D

}
(1)

≤ ∆(∆− 1)D − 2
∆− 2

(2)

We can express Equation 2 in terms of D to bound the diameter from
below.

D ≥
log

[
n(∆−2)+2

∆

]
log(∆− 1)

(3)

If we fix ∆, then we have the following bound on diameter in terms of n:

D ∈ Ω(logn) for ∆ fixed to some constant (4)

Now consider if we were to allow ∆ to grow as a function of n. If we
allow ∆ to grow no larger than log n we achieve the following bound on
diameter:

D ∈ Ω
(

logn

loglogn

)
for ∆ ∈ O(logn) (5)

The derivation of this bound is left to appendix A. Moving from nodes
of fixed degree to nodes of degree at most logn only reduces the best case
diameter of the graph from logn to logn

loglogn . We can conclude that we cannot
achieve our efficient search aim of loglogn diameter without nodes having
degree significantly higher than logn (i.e. supernodes). Section 4 will give
a construction of a graph which achieves loglogn diameter with a small set
of supernodes, but first we note a simple graph that achieves diameter near
logn.

3.2 Graph with Near logn Diameter

A rooted balanced tree of n nodes where the branching factor is ∆− 1 will
have a depth of log∆−1n. The longest path between any two nodes in the
graph will use nodes in the leaves of the tree. This path will stretch from
the root to each leaf, resulting in a diameter of 2 · log∆−1n. So, while we
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cannot expect to achieve diameters smaller than logn with a fixed ∆, it is
reasonable to construct graphs with near logn diameter.

4 Search with supernodes

We can construct a graph with O(loglogn) diameter by first defining the
graph without supernodes as a set of n

logn clusters of size logn. Given the
results from the previous section we can reasonably expect to achieve diam-
eter of O(loglogn) in each cluster, since each cluster has only logn nodes.
However, the diameter of the entire graph will be at best Ω(logn).

We can significantly decrease the diameter by incorporating a single su-
pernode. To do so, we connect the supernode to each of the n

logn clusters.
Now, we can imagine the longest distance between two nodes u, v in our
graph will occur when u and v and are in separate clusters. In this case the
path will involve traversing at most loglogn edges to go from u to the node
in the cluster connected to the supernode, then traversing one edge to the
supernode and one edge into the cluster containing u, then at most another
loglogn edges to reach u. This gives us a diameter of 2 · loglogn + 2. Thus,
we can achieve a diameter of O(loglogn) with the addition of a singlenode.
However, since our supernode must be attached to each cluster our single
supernode will have degree n

logn .

 Size: logn
Diam: loglogn

Graph
Diam: 2loglogn + 2

Supernode
Degree: n/logn

 Size: logn
Diam: loglogn

 Size: logn
Diam: loglogn

Graph
Diam: 3loglogn + 2

Supernode
Degree: n/(logn)2

Figure 5: Constructions using single supernode and supernode cluster

We can use multiple supernodes to distribute the number of clusters each
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supernode must be attached to. If we construct a cluster of logn supernodes,
we can again reasonably expect to achieve a diameter of loglogn within this
cluster. We can attach this supernode cluster to the rest of the original
graph by attaching each individual supernode to n

logn·logn clusters. The
longest distance between our u, v nodes will now pass through the cluster
containing u, the supernode cluster and the cluster containing v, leading to
a diameter of 3 · loglogn + 2 with supernodes of degree n

(logn)2
. It should be

noted that we can further reduce degree of the supernodes by a factor of k
by increasing the number of supernodes in the cluster by a factor of k. If we
restrict this k value to a constant, then the diameter of the resulting graph,
(2 + k) · loglogn + 2, remains O(loglogn).

5 Lower Bounds on Diameter with Supernodes

We will analyze how much a supernode can improve the diameter over graphs
with a small maximum degree. We will show the that for graphs of small
diameter a supernode will not affect the diameter of the graph. We will also
show that the diameter of a graph with a supernode can be bounded below
by a function in terms of the number of nodes n, the degree of the supernode
k and the maximum degree of the regular nodes ∆.

First, we will show the simple case where adding a supernode does not
affect the diameter of the graph.

Lemma 1. Adding a supernode to a graph with a diameter of less than or
equal to 2 will not reduce the diameter.

Proof of Lemma 1. This can be seen easily by noting that the path between
any two nodes attached to a supernode is 2. This means that adding a
supernode will not reduce the path length between any node.

�

Next, we show that for graphs of diameter 3 adding a supernode will
only reduce the diameter of the graph under specific conditions.

Lemma 2. Adding a supernode to a graph with a diameter of 3 will only
reduce the diameter of the graph if the supernode is attached to every pair
of nodes where the distance between the nodes is 3.

Proof of Lemma 2. If the supernode is attached to every pair of nodes
with distance 3 then the diameter of the graph will be at most 2. This is due
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to the fact that all nodes which used to have distance of 3 can reach each
other through the supernode in 2 hops. If there exists a pair of nodes with
distance 3 and the supernode is only attached to one of the pair, then even if
the supernode is attached to every other node, the diameter will be 3. This
is because the path with distance 3 is still the shortest path since traversing
the supernode takes two hops and the node which is not attached requires
one hop to reach the supernode.

�

Now, we show that the diameter of the graph is bounded when adding
a single supernode.

Theorem 1. If there exists a supernode with degree k in a graph G with
n nodes, degree ∆, and the diameter of the subgraph not containing the
supernode is d ≥ 4 then the diameter of the entire graph dn is

dn = min(2de + 2, dl + 2), where (6)

de ≥
log( (

(n−k)
k

)(∆−2)+2)

∆ )
log(∆− 1)

dll ≥
log( (n−k)(∆−2)+2)

∆ )
log(∆− 1)

Proof. see appendix

From Theorem 1, we have shown that the diameter of the graph is
bounded by a function of the number of nodes, the degree of the supernode
and the degree of the ordinary nodes in the graph. We will now extend this
result with several corollaries.

The first of these results shows that we can extend the single supern-
ode case in to the m supernode case easily using the results obtained from
Theorem 1.

Corollary 1. The diameter of a graph with m supernodes of degree k is
equal to

dn = min(2de + dsn + 2, dl + dsn + 2) (7)

where de ≥ log(
(
(n−mk)

mk
)(∆−2)+2)

∆
)

log(∆−1) and dl ≥
log(

(n−mk)(∆−2)+2)
∆

)

log(∆−1) and dsn is
the diameter of the supernode graph.
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Proof of Corollary 1. This proof follows from Theorem 1. First, we ob-
serve that the problem of finding the diameter of the graph is the same, since
we must find the two trees of maximal depth which are the smallest given
the number nodes in the graph. In this case, we now have have mk nodes
attached to supernodes but if we substitute this value for k in Theorem 1 then
we can use the results from Theorem 1. The only change that must be made
is that instead of crossing a supernode in 2 hops, they must also traverse
the supernode graph which has a diameter, dsn, by definition. Therefore,
using Theorem 1 and the diameter of the supernode graph, the diameter of
the entire graph is,

dn = min(2de + dsn + 2, dl + dsn + 2) (8)

�

From Section 4, we show that graphs can be constructed with O(loglog(n))
diameter with supernodes. We will now show that for those graphs, this re-
sult is near optimal in terms of diameter and degree.

Corollary 2. The construction from Section 4 has near optimal diameter.

Proof of Corollary 2. This can be observed by applying the results from
Corollary 1. We observe that the construction has log(n) supernodes and
each node has a degree of n

(log(n))2
. We hypothesize that our construction

can achieve a diameter equal to

2
log( (n(∆−2)+2)

∆ )
log(∆− 1)

+ dsn + 2

From Corollary 1, we know that the diameter of the graph, dn, will be equal
to

dn = min(2de + dsn + 2, dl + dsn + 2) (9)

Therefore we substitute the values for m and k into the equations for de

and ds to show that the diameter is near optimal.
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de ≥
log( (

(n−mk)
mk

)(∆−2)+2)

∆ )
log(∆− 1)

=
log(

(n−(logn) n
(logn)2

)(∆−2)+2)

∆ )
log(∆− 1)

=
log(

(n− n
(logn)

)(∆−2)+2)

∆ )
log(∆− 1)

=
log( (logn−1)(∆−2)+2)

∆ )
log(∆− 1)

(10)

and

dl ≥
log( (n−mk)(∆−2)+2)

∆ )
log(∆− 1)

=
log(

(n−(logn) n
(logn)2

)(∆−2)+2)

∆ )
log(∆− 1)

=
log(

(n− n
logn

)(∆−2)+2)

∆ )
log(∆− 1)

(11)

As n grows, 2loglog(n) will be smaller than log(n− n
logn). Therefore, dn

is minimal when the value is 2de + dsn +2 where de is the equal to Equation
10. Therefore, the diameter of our construction is almost the same as the
optimal diameter.

�

Corollary 3. To achieve diameter of O(loglogn) the degree of the supern-
odes is bounded by Ω

(
n

(logn)2

)
Proof of Corollary 3. If the diameter is log(

(logn)(∆−2)+2)
∆

)

log(∆−1) and from Corol-

lary 1 the diameter of the graph will be log(
(n−mk)(∆−2)+2)

∆
)

log(∆−1) or log(
(
(n−mk)

mk
)(∆−2)+2)

∆
)

log(∆−1) .
Setting the hypothetical diameter equal to the two lower bound results and
reducing, we obtain,

log(n) = n−mk (12)
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or

log(n) =
n−mk

mk
(13)

where m equals log(n). Since the value of k is less for Equation 13, we
find that k = n

(logn)2

�

6 Conclusion

In this work, we have shown that supernodes are necessary for efficient
search. We first established a lower bound on the worst-case search time in a
network without supernodes. We then constructed a graph which illustrates
that with supernodes, O(loglog(n)) search is possible.

Additionally, we established a lower bound on the benefit of using su-
pernodes in a network, and show that our construction is near optimal. We
show that to achieve efficient search with m supernodes, the degree of the
supernodes must be Ω

(
n

log(n)·m

)
.

With these results, we can show that supernodes are necessary in P2P
networks for efficient search.

A Diameter bound given ∆ < logn

When ∆ < logn, we can use the Moore bound as follows, to derive a bound
on diameter simply in terms of n

D ≥
log

[
n(∆−2)+2

∆

]
log(∆− 1)

≥
log

[
n·(logn−2)+2

logn

]
log(logn− 1)

≥ log [n · (logn− 2)]− loglogn

log(logn− 1)
(14)

since 1/2 · logn < logn− 2 when n > 16

≥
log

[
n · (1

2 · logn)
]
− loglogn

loglogn

≥ logn− 1
loglogn
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Thus we can say that when ∆ < logn, our diameter D ∈ Ω
(

logn
loglogn

)
.

B Proof of Theorem 1

Proof. Given the set of nodes n, we would like to construct the graph with
the smallest diameter with k nodes attached to a supernode. If the supernode
s is attached to k nodes then there exists n − k nodes which are not con-
nected to the supernode. Since it requires one edge to reach a supernode and
one edgee to return to a node, the maximum distance between any two nodes
attached to supernodes is 2. The diameter of the entire graph is the sum of
the two largest paths from a node attached to the supernode to its farthest
leaf plus the 2 for the traversal across the supernode. This assumes that
there are no branches traversing from a subgraph containing a node attached
to the supernode to another subgraph with the same property except through
the supernode. It will be seen that this assumption does hold due to the way
in which we construct the subgraph.

Following the intuition that drives the Moore Bound, the length of a path
from a root node to a leaf is always minimal when every node in the subgraph
has as many children as possible given its maximum degree. Since we wish
to have as many children as possible, we will construct the graph so that each
node only has one parent and therefore we have a complete tree. We can
now characterized the diameter of our graph as the the sum of the depths of
the two largest trees plus 2 edges which traverse across the supernode. There
are two different cases which need to be addressed. Either the nodes which
form a the two maximal trees are from two seperate trees or they are from
a single tree.

We will discuss the case where there exists two maximal trees which
make up the diameter of the graph. The idea is to minimize every tree
simultaneously. This is done by spreading the nodes evenly between the k
attached nodes and forcing them to form complete balanced trees.

Lemma 3. If there exists a set of m nodes and they are attached to a root
node, then the path length from the root node to the deepest leaf is minimal
when the nodes form a complete tree.

Proof of Lemma 3. The proof follows by induction. Let m = 0 then the
tree is complete and the path from root to leaf is minimal. Now we assume
that when m = k the path is minimal when nodes from a complete tree. Now,
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if m = k +1 then the one more node must be placed on the tree. If all of the
leaves of complete tree with k nodes have a depth of h then adding a single
node to any leave will create a complete tree of depth h + 1 where the path
length to the new node is minimal. If some of the leaves of the complete tree
with k nodes have depth h − 1 then placing the node at a node with depth
h− 1 will create a new complete tree with k + 1 nodes and the path from the
root to the deepest node is h which is minimal since it was the minimal path
for the tree with k nodes. However, if the new node is placed on a node with
depth h then the tree will no longer be a complete tree and the path length
will be h + 1 which is not minimal. So the lemma follows by induction.

�

Using Lemma 3 we know that the the depth of a tree is minimal when
the tree is complete for a set of nodes m. We also know that the size of
the tree grows with the number of nodes so we form k trees with an equally
distributed number of nodes n−k

k . If n−k
k nodes form a complete tree, then

each tree has (at most) ∆(1 + (∆− 1) + · · ·+ (∆− 1)dt−1) nodes, where dt

is the tree depth. This is the Moore Bound less one node since the root of
the tree is actually part of the k nodes attached to the supernode. So, by the
Moore Bound,

n− k

k
≤ (

∆(∆− 1)de + 2
(∆− 2

)− 1 (15)

Where de is defined to be the depth of the tree. This equation can be
rearranged to show a bound on the depth of this tree in terms of the number
of nodes and the maximum degree of the nodes.

de ≥
log( (

(n−k)
k

)(∆−2)+2)

∆ )
log(∆− 1)

(16)

Lemma 4. The diameter must stay the same or increase by removing nodes
from any trees of depth de and placing them on at least two other trees.

Proof of Lemma 4. The proof for the lemma is straight forward. If nodes
are removed from the any tree then the depth of that tree will either stay the
same or decrease. The depth of this tree will only decrease if the number of
nodes at depth de is less than the number of nodes removed. If a node is
added to a tree of depth de then the depth of that tree will always stay the
same or increase. Since we are adding the nodes to two trees of depth de,
we know that the depth of these trees will either stay the same or increase.
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. . . k

s

n-k
k

n-k
k

n-k
k

{de

{de . . . k -1 } dl

Figure 6: Diameter of large tree and evenly distributed trees

Since our diameter is the sum of the two maximal trees, we know that the
diameter of this graph where nodes are being added to at least two trees will
always increase or stay the same since the sum of the depths has the same
property.

�

Using Lemma 4, the diameter of the graph is minimal when the nodes
are evenly distributed for the all cases where nodes are rearranged to more
than one tree. This leaves a case where nodes are only added to a single tree.
Since the number of nodes grows exponentially with the depth of the tree, it
can be shown that in specific cases the depth of the single tree is less than
the depth of two trees.

Let all node removed from k − 1 trees be added to a single tree. Let the
depth of the single tree be dl and the largest of the k − 1 remaining trees be
ds. Since all nodes removed from trees of depth de are added to only dl, the
value of ds ≤ de for all trees. Since ds is the depth of the largest remaining
tree, nodes should be removed evenly because no advantage is gained by re-
moving all nodes from a single tree since this does not change ds.

We will start by showing the simple case and then proving that the gen-
eral case is bounded by the simple case. First, we let ds = 0 and all n − k
nodes are part of a single tree. Since the tree of depth dl is constructed by
adding nodes to a tree of depth de then de ≤ dl. Each leaf on the trees of
depth de have a max degree ∆ and has at most (∆−1) children. There were
(k− 1) trees with ∆ branches with 1 + (∆− 1) + · · ·+ (∆− 1)de−1 nodes on
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each branch. Observe that the trees with depth de have ∆(∆− 1)de−1 leaves,
which can have at most (∆ − 1) children each. Therefore, we cannot just
simply add the trees with ∆ branches to the edges of the leaves to create a
large tree. A single branch must be pruned from the trees and this forms
(k − 1) branches. These branches can be formed to create (k−1)

(∆−1) new trees

that can be added. This gives a total number of (k − 1) + (k−1)
(∆−1) sub-trees

which can be added to the leaves of the large tree. Since the depth of the large
tree is the sum of the base tree, de, and the sub-trees, de, then the depth of
the large tree is smaller than or equal to 2 trees of depth de only when the
number of sub-trees to be added is less than or equal to the number of leaves
in the large tree. More formally, if ∆(∆ − 1)de−1 ≥ (k − 1) + (k−1)

(∆−1) then
dl ≤ 2de. Our tree is constructed by evenly distributing the nodes at each
level and, if there are leaves to which a subtree is not fixed, the nodes at the
lowest depths should be distributed to those leaves to balance the tree. The
depth of the tree after these nodes are arranged will always be the same as
or less than 2de.

This leaves the more general case of the problem where there exists a tree
with depth ds such that 0 < ds < de. There can be k − 1 trees of depth ds

without affecting the diameter of the entire graph and each of these trees has
∆(1+(∆−1)+ · · ·+(∆−1)ds−1) nodes. Lets assume that there exists k−1
trees with depth ds and a large tree with depth dl such that ds + dl ≤ 2de.
If it is possible to remove the nodes from all of the k − 1 small trees and
distribute them onto the large tree without breaking the inequality then it is
sufficient to construct only the single large tree.

Lemma 5. If (∆−1)dl−ds+1 ≥ (k−1) then adding the leaves from the k−1
trees with depth ds to the large tree with depth dl will only increase the depth
of the large tree by at most 1.

Proof of Lemma 5. This is true if the number of leaves in the (k−1) small
trees is less than the number of leaves at the bottom of the tree with depth
dl. If there are k − 1 trees of size ds, then there are (k − 1)∆(∆ − 1)ds−1

leaves at depth ds. There are ∆(∆ − 1)(dl) possible children for the leaves
in the large tree. Therefore, (k − 1)∆(∆ − 1)ds−1 ≤ ∆(∆ − 1)dl must hold.
This can be simplfied to (k−1) ≤ (∆−1)dl−ds+1. So if the inequality is true
then the number of leaves in the k− 1 small trees is less than the number of
leaves in the large tree and adding these nodes to that tree will only increase
the depth by at most that new row of nodes.

�
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From Lemma 5, we can see that adding new leaves to the large tree from
all of the small trees only increases the depth of the large tree by the height of
the row removed when (∆− 1)dl−ds+1 ≥ (k − 1). This means that the value
of the tree with all the nodes must have a depth less than or equal to the
sum of the depths of a tree with depth ds and a tree with depth dl. Therefore
when the inequality holds, it is sufficient to only have a single large tree with
all n− k nodes. Now we are left with the case where the inequality does not
hold, it can be shown that this case collapses to the evenly distributed case.
We will first present a lemma that will help us show this case.

Lemma 6. If (∆−1)dl−ds−1 ≤ (k−1) then adding the leaves from the large
tree with depth dl to the k−1 trees with depth ds will only increase the depth
of the k − 1 trees by at most 1.

Proof of Lemma 6. The proof of this lemma is similar to the proof for
Lemma 5. If the number of leaves in the large tree is not greater than the
number of leaves in k − 1 small trees then adding the leaves to the small
tree will not increase the depth of the k − 1 trees by at most 1. If there are
k − 1 trees of size ds, then there are (k − 1)∆(∆ − 1)ds

possible children
for the leaves at depth ds. There are ∆(∆ − 1)(dl−1) leaves in the large
tree. Therefore, (k − 1)∆(∆− 1)ds ≥ ∆(∆− 1)dl−1 must hold. This can be
simplfied to (k − 1) ≥ (∆ − 1)dl−ds−1. So if the inequality holds then the
number of leaves in the large tree is less than the number of leaves in the big
tree.

�

From Lemma 6, we can see that if the inequality holds we can remove
nodes from the large tree and distribute them on the k − 1 small trees with-
out increasing the depth of the k − 1 smaller trees by the depth of the row
removed from the large tree. This means that when the inequality holds the
depth of the even tree is always less than or equal to the sum of the depths
of the large tree and the small tree.

Since the inequalities overlap, this means that for all cases either the
diameter of the graph is either the depth of two trees where the nodes are
evenly distributed or the depth of a single tree which contains all nodes plus
the time to traverse across a supernode. The diameter is the minimum of
these two cases. Since the evenly distributed trees have n−k

k nodes and the
large tree has n − k nodes then by Moore’s Bound, the depth of these trees
will be,
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de ≥
log( (

(n−k)
k

)(∆−2)+2)

∆ )
log(∆− 1)

(17)

dl ≥
log( (n−k)(∆−2)+2)

∆ )
log(∆− 1)

(18)

And the diameter of the graph is

dn = min(2de + 2, dl + 2) (19)

�
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