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ABSTRACT
Utility or preference elicitation is a critical component in many rec-
ommender and decision support systems. However, most frame-
works for elicitation assume a predefined set of features (e.g., as
derived from catalog descriptions) over which user preferences are
expressed. Just as user preferences vary considerably, so too can
the features over which they are most comfortable expressing these
preferences. In this work, we consider preference elicitation in the
presence of subjective or user-defined features. We treat the prob-
lem of learning a user’s feature definition as one of concept learn-
ing, but whose goal is to learn only enough about the concept defi-
nition to enable a good decision to be made. This is complicated by
the fact that user preferences are unknown. We describe computa-
tional procedures for identifying optimal alternatives w.r.t minimax
regret in the presence of both utility and concept uncertainty; and
develop several heuristic query strategies that focus on reduction
of relevant concept and utility uncertainty. Computational experi-
ments verify the efficacy of these strategies.

1. INTRODUCTION
Assessing the preferences of users is a critical component in any

decision support or recommender system: the ability to tailor rec-
ommendations to the needs and desires of a particular user is in-
deed a hallmark of intelligent decision support. Within AI, decision
analysis, and operations research, a variety of systems and method-
ologies have been developed for preference elicitation: engaging
in some “dialog” with a user to determine her preferences. These
range from conversational recommender systems [4, 11] that pro-
vide considerable navigational control to a user as they explore the
space of possible products/options, to adaptive elicitation systems
that ask the user a sequence of questions about her preferences or
utility function [2]. In what follows, we focus primarily on elicita-
tion.
Typically one assumes the existence of a set of universal or cata-

log features over which user preferences are specified. For instance,
in product configuration, preferences are assumed to be defined in
terms of product features and specifications (e.g., color, engine size,
fuel economy, available options, etc. in the case of a car). However,
users can exhibit significant variation in the features over which
their preferences are most naturally expressed, and these features
may not be present among the set of catalog features. For instance,
in the automotive domain, some users may be concerned about the
“degree of safety” of a car, but different users may have different
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notions of safety in mind.1 In recent work [3] we have developed
a model for subjective feature elicitation that queries users about
the feature in question, so that preference tradeoffs can be made
involving the new feature. This model casts the problem as one of
concept learning [1, 5]. However, unlike traditional concept learn-
ing, the aim is to learn just enough about the concept definition to
make a good or optimal decision on the user’s behalf. Specifically,
it is assumed that the user’s underlying utility function is known
and can be used to render judgements of relevance [3].
In this paper, we extend this model to allow utility uncertainty.

Indeed, while subjective feature elicitation is an important compo-
nent of the process, genuine preference elicitation in the presence
of subjective features requires interacting with a user when both the
feature definitions and user preferences are unknown.
We present a model for preference elicitation with subjective fea-

tures that allows for the simultaneous elicitation of user utility and
user features, making appropriate tradeoffs between the two types
of information. We use minimax regret [2, 10] as our decision cri-
terion given concept and utility uncertainty, allowing good or opti-
mal decisions to be made without complete specification of either
component. We present several heuristic techniques for querying
concept definitions and utility functions that reduce minimax regret
quickly. In contrast to standard concept learning models, we aim to
reduce “relevant” concept uncertainty w.r.t. the utility model, rather
than learn an accurate concept definition for its own sake. And par-
tially elaborated concept definitions influence the choice of utility
queries as well. This provides a fully integrated preference elicita-
tion methodology that allows a user to dynamically (and partially)
specify their own utility-bearing product features.

2. FEATURE & UTILITY UNCERTAINTY
We consider subjective features that are “objectively” definable

using catalog attributes, but where the definition varies from user
to user. For instance, the notion of a safe car may be different for a
parent with small children, a young, single professional interested
in high-performance vehicles, and a family that takes frequent trips
to the mountains. The concept in question, namely, safety, has per-
sonalized definitions.2 The user also has preferences for safety (as
she does for other car attributes) represented in the form of a util-

1E.g., a driver with a young family may define safety in terms of
tires, air bags, child restraints, etc., while a high-performance driver
refers to the braking system, roll bars, etc.
2A distinct form of subjective feature involves aesthetic judge-
ments or subjective tastes. In the car domain, two people may have
different opinions as to whether a car looks “aggressive” or “cute,”
without being able to articulate that preference. As a result, col-
laborative filtering techniques [8] are best-suited to helping user’s
navigate through products with such features.



ity function: it is both the user’s utility function over this extended
attribute space, as well as her personal definition of safety, that de-
termines the optimal vehicle. As such, the recommender system
must engage in both preference elicitation and feature elicitation
to make a suitable recommendation.3
This leads to interesting tradeoffs in elicitation. One could en-

gage in feature elicitation using well-known concept learning tech-
niques [1] and then, with a full definition in hand, move to prefer-
ence elicitation (e.g., using techniques mentioned above); but this
could be wasteful. For instance, suppose we learn that safety re-
quires attribute Xi to be true (e.g., have side airbags) but know
nothing else about the concept. If we engaged in preference elic-
itation simultaneously and ascertained that no cars in the user’s
price range satisfyXi—or that other more important features must
be sacrificed to attain Xi—then the full concept definition is not
needed for optimal allocation.
Conversely, we could engage in preference elicitation, using the

subjective feature as an attribute without knowing its definition, and
then engage in feature elicitation to determine a final recommenda-
tion. However, without some idea of the concept definition much
more preference information will be elicited than necessary. This
suggests that interleaved feature and utility elicitation can be much
more effective.
In this section, we first formalize our basic model of utility and

concept uncertainty; we then define the minimax regret decision
criterion for this case; finally, we develop a MIP formulation for
solving the computing minimax regret. We turn to the question of
elicitation in the next section.

2.1 Basic Model
As above, assume features X = {X1, ...Xn}, which we take to

be Boolean for ease of exposition, and a feasible product setX ⊆
Dom(X ). The user’s utility for any product x ∈ X is decomposed
into two components. First, the user has some utility or reward
w.r.t. catalog features. We denote this by function r(x; w) where
w denotes the parameters of this reward function. In what follows,
we assume r is additive over X (this is not critical, only that r is
linear in whatever parameterization w we adopt).
The user also has a preference for configurations satisfying some

target concept c. Concept c is an unknown Boolean function over
X : c(x) = c(x1, . . . ,xn).4 We suppose that c is drawn from a par-
ticular function class/hypothesis space H (e.g., the set of conjunc-
tive concepts). We treat identification of c as a problem of concept
learning [1], with some query set Q that can be used to refine the
target concept. For instance, membership queries would be quite
natural (e.g., “do you consider the following car to be safe?”).5 A
value or bonus wb is associated with any x s.t. c(x) holds, repre-
senting user utility for concept satisfaction.
Assuming utility independence for concept satisfaction relative

to other preferences, we define the utility of x under concept c and
reward/bonus weight vector (or utility parameters) w to be:

u(x; w, c) = r(x; w) + wbc(x)

In other words, the utility of x is its reward, plus the bonus wb if x
satisfies c. The optimal configuration isx∗

w,c = arg max u(x;w, c).
Since c is definable in terms of catalog features, we could in

3In cases where a very small number of definitions exist that tend
to apply to specific user types, one could imagine predefining these
features and quickly discriminating them. However, our aim is to
allow more open-ended feature definition.
4Allowing multivalued concepts is straightforward.
5Other query types (e.g., equivalence queries) are less natural in
this domain, but may play a role in others.

principle elicit utilities using only catalog features. However, al-
lowing a user to articulate her preferences in terms of natural com-
posite features can dramatically reduce the burden of elicitation;
furthermore, the addition of such aggregate features with suitable
definitions can greatly increase the degree of (conditional) utility
independence in a model.

2.2 Minimax Regret
During preference elicitation, we are uncertain about the true

utility w and the true user concept c. As a result, we cannot gener-
ally identify the optimal product x∗

w,c; but we can still make a deci-
sion with partial utility and concept information. LetW be the set
of feasible utility functions, those consistent with any prior infor-
mation we have about user preferences and user query responses.
W is generally a convex polytope given by linear constraints on
utility parameters (as discussed below). Let version space V ⊆ H
represent our current set of consistent hypotheses w.r.t. c [9], i.e.,
those that respect any prior knowledge about the concept and re-
sponses to queries (as discussed below). Define minimax regret
w.r.t. utility and feature uncertainty:

Definition 1 Given utility space W and version space V , the max
regret of x ∈ X, the minimax regret of (W,V ) and the minimax
optimal configuration are:

MR(x;W, V ) = max
w∈W

max
c∈V

max
x′∈X

u(x′; w, c) − u(x; w, c) (1)

MMR(W, V ) = min
x∈X

MR(x; W,V ) (2)

x
∗

W,V = arg min
x∈X

MR(x; W,V ) (3)

Should we recommend option x, max regretMR(x; W, V ) bounds
(tightly) how far this decision could be from optimal. Intuitively,
an adversary selects the user’s utility function w and the intended
subjective feature definition c to maximize the difference in util-
ity between our choice x and the optimal choice x∗

w,c (notice that
the adversary’s maximizing configuration must be optimal under
(w, c)). A minimax optimal choice is any product that minimizes
max regret in the presence of such an adversary, and its max regret
is the minimax regret given our current uncertainty.

2.3 Computing Regret: Conjunctive Concepts
We assume that the underlying configuration problem is repre-

sented as a MIP maxx∈X u(x). We can then incorporate utility
uncertainty (in the form of a bounded polytope W ) into the MIP
following [2], and feature uncertainty in the form of a version space
V following [3]. However, in the latter case, the formulation de-
pends critically on the form of the concept and query classes one
admits. We illustrate the formulation for the case of (nonmonotone)
conjunctive concepts with membership queries.
Assume target c is a conjunction of literals over variables Xj .

Memberships queries ask whether x ∈ c for some product x. Let
E+ (E−) be the set of positive (negative) examples acquired by
these queries, and (nonempty) V the induced version space. Instead
of representing V using most general and most specific concepts,
we encode E+ and E− directly in our MIP below (e.g., negative
examples can directly represent most general concepts [6]).
Constraint Generation We formulate the minimax problem Eq. 2
as a semi-infinite minimization. Let (X1, · · · , Xn) be configura-
tion variables over our n features: its instantiation will denote the
minimax optimal product. Let constant b(x, w, c) = wb if c(x)
and 0 otherwise. Let indicator variable Ic, for each c ∈ V , de-
note that configuration (X1, · · · , Xn) satisfies c; and write xj ∈ c
(resp., xj ∈ c) to denote that variable Xj occurs positively (resp.,



negatively) in c. ThenMMR(V ) is given by:
min δ

s.t. δ ≥ r(x∗

w,c)−r(X1, · · ·Xn)

+ b(x∗

w,c, c)−wbI
c ∀c∈V,∀w∈W (4)

Ic ≤ Xj ∀c ∈ V,∀xj ∈ c (5)
Ic ≤ 1 − Xj ∀c ∈ V, ∀xj ∈ c (6)

For any fixed concept c and utility function w ∈ W , the adversary
maximizes the regret of (X1, · · · , Xn) with witness product x∗

w,c.
The MIP above chooses a configuration that minimizes against the
“worst-case” choice of the adversary (with (4) ensuring MMR is
as great as regret given any c ∈ V, w ∈ W ; and (5, 6) encoding
whether (X1, · · · , Xn) satisfies c).
Regret constraints for most w ∈ W,c ∈ V will be inactive, so

we use constraint generation to search through the space of adver-
sarial utility functions and concepts. Let Gen ⊆ W × V be a
(small) set of (w, c)-pairs (initially a single pair); we solve a re-
laxed MIP using only constraints for those (w, c) ∈ Gen . Let
δ∗ and x∗ be the solution to the relaxed MIP. We test for violated
constraints by solving the max regret problemMR(x∗; W, V ), de-
tailed below. If MR(x∗, W,V ) > δ∗, the utility-concept pair
(w′, c′)—produced as a witness in max regret computation—offers
larger regret for x∗ than any (w, c) ∈ Gen; indeed, it corresponds
to the maximally violated constraint in the relaxed MIP. So we add
(w′, c′) to Gen and resolve. If MR(x∗; W, V ) = δ∗, x∗ is the
optimal solution toMMR(W,V ).

Generating Violated Constraints We compute the maximally
violated constraint for the MIP above by solving the max regret
problem MR(x∗; W,V ) for the current relaxed solution x∗. This
too can be formulated as a MIP that, given x∗, chooses an (adver-
sarial) concept c, utility w and configuration. Details are omitted,
but we use a standard reformulation to convert quadratic terms into
a continuous variable, giving us a linear objective (similar to [2]).

3. SIMULTANEOUS FEATURE AND UTIL-
ITY ELICITATION

While minimax regret provides an appealing means for making
recommendations under utility and feature uncertainty, our aim is
to learn enough about a user’s preferences and underlying concept
to make good (or even optimal) recommendations, while asking as
few queries as possible. In this section, we develop several heuristic
query strategies that can quickly reduce MMR(W,V ). We begin
with a discussion of several forms of queries.

Query Types With respect to explicit concept queries we restrict
attention to membership queries of the form “does x satisfy concept
c?” (e.g., “Do you consider car x to be safe?”). Each membership
query gives rise to a positive or negative concept example, and the
version space can be encoded in a variety of ways depending on the
hypothesis class [6].
Especially natural are comparison queries: a user is asked if she

prefers one product x to another y. Such comparisons can be lo-
calized to specific subsets of attributes as well, depending on the
form of the utility model and can be generalized to choice sets over
more than two products.
Responses to these and other common queries impose linear con-

straints onW when subjective features are absent. But the situation
becomes more complicated when feature uncertainty is added. If a
user states that she prefersx toy in response to a comparison query,
we can no longer impose simple constraints onW . The greater util-
ity of x could be due to its satisfaction of the subjective feature; but
we this cannot be reflected in the weight vector alone. This can

introduce complicating constraints that tieW and V together. One
simple solution to this problem is to ask concept queries whenever
one asks a comparison query. More precisely, if a user is asked
whether she prefers x or y, a membership query can be asked of
each outcome at the same time (e.g., “is x safe?”). This is rea-
sonably natural, since the assessment of preference likely involves
some cognitive assessment of the subjective feature in question.
We call such a query a combined comparison/membership (CCM)
query. This allows us to impose simple valid linear constraints;
e.g., if x is preferred and satisfies the concept, while y does not,
then we have wx + b − wy > 0.
However, if we want a pure comparison query without the corre-

sponding membership queries, we can still impose valid (and com-
plete) conditional constraints onW , based on the whether x,y sat-
isfy the concept, thus linkingW and V . In the case of conjunctive
concepts, we can linearize these conditional constraints without the
introduction of new variables.

Elicitation Strategies We now develop elicitation strategies for
simultaneous utility and feature uncertainty.
For the choice of an appropriate comparison query, we adopt the

current solution strategy (CCSS) [2]: given the minimax optimal
solution x∗

W,V and the adversarial witness xa, the user is asked
which of these two products is preferred.
To select membership queries, we examine two methods explored

in [3]. The first is a simple halving strategy adapted from standard
conjunctive concept learning: we ask random memberships queries
until a positive example is found; then queries are asked by negat-
ing literals one by one in the (unique) most specific conjunctive
hypothesis. Once a positive example is found, this converges to
the true conjunctive concept using a number of queries linear in the
number of catalog features.
We also explore the current solution strategy for membership

queries (MCSS): this selects a query based on which of the optimal
product x∗

W,V and/or witness xa satisfy the adversary’s choice of
concept ca in the current solution. If x∗

W,V ,xa ∈ ca, then CSS
asks membership query xa; if x∗

W,V (∈ ca,xa ∈ ca, then CSS
asks query x∗

W,V ; otherwise CSS asks a query depending on the
whether xa is V -consistent (see [3] for further details and motiva-
tion). MCSS will never as a membership query if the product in
question is “certain” (i.e., has its concept status determined unam-
biguously by V ).
Unlike the cases of pure utility or pure feature elicitation, in the

simultaneous case, wemust make a decision at each stage regarding
which type of query to ask, membership or comparison.
In our “interleaved” strategies below, we decompose max regret

of the current solution into reward regret and concept regret and
use these measures to determine whether to ask a comparison (util-
ity) query or a membership (concept) query, depending on which is
larger. Let (x∗,xa, w, c) be the current solution. Max regret of x∗

is rr + cr (reward regret plus concept regret), where

rr = r(xa; w) − r(x∗; w); cr = wb(c(x
a) − c(x∗))

Given this, we examine five query strategies. Two are phased
strategies that first attempt to learn the concept and then refine
the utility function. The first is dubbed Ph(H,CCSS) and initially
uses the halving algorithm (membership queries) to determine the
precise concept definition, and then uses CCSS (comparisons) to
refine utility function uncertainty. The second phased strategy is
Ph(MCSS,CCSS) and has the same form as the first, but uses MCSS
to generate membership queries. Of course, MCSS can “stall” if the
current solution is such that minimax optimal and adversarial prod-
ucts are V -certain. In such a case, a comparison query is asked. As



Figure 1: Minimax Regret vs. Number of Queries (30 variables, 90
constraints), averaged over 20 runs

such, we can view Ph(MCSS,CCSS) as a form of interleaving (see
below), but with an absolute preference for membership queries
if an MCSS-membership query is not vacuous. Our interleaved
strategies ask a membership queries if concept regret exceeds re-
ward regret at the current solution, and a comparison query if re-
ward regret is greater. They always use CCSS to generate compar-
isons; but the first, I(H,CCSS), generates membership queries via
halving, while the second, I(MCSS,CCSS), uses MCSS. Finally, the
CCM strategy uses our combined comparison-membership queries,
using CCSS to generate the comparison, and asking membership
queries of both alternatives, x∗ and xa.

4. EMPIRICAL EVALUATION
We experimented with the five query strategies above, compar-

ing them on randomly generated configuration problems. Queries
are posed to simulated users, each of which possesses a randomly
generated utility function and subjective feature used to answer
queries. Wemeasured the effectiveness of our strategies by the con-
sidering regret reduction in function of the total number of queries.
Large configuration problems were randomly generated, defined

on 30 variables with 90 random binary constraints; and conjunctive
concepts were generated from a pool of 10 variables, with an av-
erage concept size of 6.67 conjuncts. Fig. 1 illustrates the results
when the bonus weight bound set to 10% of the utility uncertainty.
We see that both interleaved strategies, dominate the phased strate-

gies by a significant margin. Both interleaved strategies start by
asking the same comparison queries (and tend to ask quite a few
comparison queries before any membership queries are ever asked),
so their effectiveness is identical until the concept regret becomes
dominant. When this happens, MCSS membership queries are
more effective than halving queries, but only by a small margin.
After 80 cycles, max regret is reduced to about a third of its orig-
inal value. In contrast, the phased strategies fail to reduce regret
significatively.
The combined strategy CCMperforms worse than the interleaved

strategies, but is still better than either phased approach. In this
strategy each interaction counts as three queries, since the user must
answer a comparison query and two membership queries. How-
ever, one asks a comparison and membership query of the same
three outcomes, thus the cognitive cost might be significantly less
than 3 queries. A “leftward compression” of the CCM curve would
make the strategy seem somewhat more competitive.

Minimax regret computation is initially very fast (less than 1s),
but is greatly affected from the conditional constrains (once 50
comparisons are incorporated, minimax regret computation requires
more than one minute). From this perspective, the CCM query
strategy offers the fastest computation time, as it never requires a
conditional constraints.
Overall these results suggest that MMR a very effective means

of determining good decisions in the face of simultaneous utility
and feature uncertainty. Furthermore, it is a very effective driver of
elicitation: the flexibility of interleaved strategies is, indeed, advan-
tageous. Of course, more refined heuristics for choosing between
membership and comparison queries could make interleaved strate-
gies even more robust.

5. CONCLUDING REMARKS
We have presented a model for preference elicitation that allows

a user to define her own subjective features over which she can
express her preferences. Our interleaved strategies are especially
effective at simultaneous elicitation of concepts and utilities, us-
ing regret to make appropriate choices among the different types
of queries. Furthermore, optimal or near-optimal product recom-
mendation is generally possible with far from complete concept
definitions and utility information.
A number of important directions for future research remain.

Further development of query strategies is one critical direction.
Additional empirical and theoretical analysis of means to make
suitable tradeoffs between membership queries and comparison queries
is ongoing, as is the generalization of our computational and elic-
itation models to richer concept hypothesis spaces, and additional
forms of concept queries and utility queries.
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